Normal Adult Hemodynamic Parameters

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Parameter</th>
<th>Equation</th>
<th>Normal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP</td>
<td>Systolic Blood Pressure</td>
<td></td>
<td>90 - 140 mmHg</td>
</tr>
<tr>
<td>DBP</td>
<td>Diastolic Blood Pressure</td>
<td></td>
<td>60 - 90 mmHg</td>
</tr>
<tr>
<td>MAP</td>
<td>Mean Arterial Pressure</td>
<td>SBP + (2 x DBP/3)</td>
<td>70 - 105 mmHg</td>
</tr>
<tr>
<td>CVP</td>
<td>Central Venous Pressure</td>
<td></td>
<td>5 – 10 mmHg</td>
</tr>
<tr>
<td>PPV</td>
<td>Pulse Pressure Variation</td>
<td>(PPmax - PPmin)/(PPmax - PPmin)/2 x 100</td>
<td><10% unlikely to be fluid responsive >13-15% likely to be fluid responsive</td>
</tr>
<tr>
<td>SVV</td>
<td>Stroke Volume Variation</td>
<td>SVmax x SVmin / (SVmax + SVmin) / 2 x 100</td>
<td><10% unlikely to be fluid responsive >13-15% likely to be fluid responsive</td>
</tr>
<tr>
<td>CO</td>
<td>Cardiac Output</td>
<td>HR x SV/1000</td>
<td>4.0 - 8.0 l/min</td>
</tr>
<tr>
<td>CI</td>
<td>Cardiac Index</td>
<td>CO/BSA</td>
<td>2.5 - 4.0 l/min/m2</td>
</tr>
<tr>
<td>SV</td>
<td>Stroke Volume</td>
<td>CO/HR x 1000</td>
<td>60 - 100 ml/beat</td>
</tr>
<tr>
<td>SVI</td>
<td>Stroke Volume Index</td>
<td>CI/HR x 1000</td>
<td>33 - 47 ml/m2/beat</td>
</tr>
<tr>
<td>SVR</td>
<td>Systemic Vascular Resistance</td>
<td>80 x (MAP - RAP)/CO</td>
<td>800 - 1200 dynes - sec/cm²</td>
</tr>
<tr>
<td>SVRI</td>
<td>Systemic Vascular Resistance Index</td>
<td>80 x MAP - RAP/CI</td>
<td>1970 - 2390 dynes - sec/cm²/m²</td>
</tr>
<tr>
<td>HR</td>
<td>Heart Rate</td>
<td></td>
<td>60 - 120 bpm</td>
</tr>
<tr>
<td>BSA</td>
<td>Body Surface Area</td>
<td>BSA(m²) = 0.007184 x wt (kg) / (ht (cm) – 39)/2</td>
<td>Men 1.9 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Women 1.6 m²</td>
</tr>
<tr>
<td>EF</td>
<td>Ejection Fraction</td>
<td>SV/EDV</td>
<td>55-75%</td>
</tr>
<tr>
<td>SaO2</td>
<td>Arterial Oxygen Saturation</td>
<td></td>
<td>95 - 100%</td>
</tr>
<tr>
<td>SvO2</td>
<td>Mixed Venous Saturation</td>
<td></td>
<td>60 - 80%</td>
</tr>
</tbody>
</table>

Goal Directed Therapy
Goal-Directed Therapy (GDT) is a term used to describe the use of cardiac output or similar parameters to perioperatively guide intravenous fluid and inotropic therapy.

Mortality

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Type</th>
<th>Number of Patients</th>
<th>Control</th>
<th>GDT Protocol</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilson</td>
<td>Major elective surgery</td>
<td>138</td>
<td>17% (8/48)</td>
<td>3% (5/92)</td>
<td>0.007</td>
</tr>
<tr>
<td>Rhodes</td>
<td>High risk surgery</td>
<td>106</td>
<td>7.5% above 15 years</td>
<td>20.7% above 15 years</td>
<td>0.09</td>
</tr>
<tr>
<td>Boyd</td>
<td>High risk surgery</td>
<td>107</td>
<td>22.7%</td>
<td>5.7%</td>
<td>0.015</td>
</tr>
</tbody>
</table>

Morbidity (% of Patients) Complications (per Patient)

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Type</th>
<th>Number of Patients</th>
<th>Control</th>
<th>GDT Protocol</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boyd</td>
<td>High risk surgery</td>
<td>107</td>
<td>1.35</td>
<td>0.68</td>
<td>0.008</td>
</tr>
<tr>
<td>Venn</td>
<td>Hip fracture repair</td>
<td>90</td>
<td>20%</td>
<td>7%</td>
<td><0.5</td>
</tr>
<tr>
<td>Gao</td>
<td>Major elective surgery</td>
<td>100</td>
<td>7 (+/3)</td>
<td>5 (+/3)</td>
<td>0.03</td>
</tr>
<tr>
<td>Pease</td>
<td>High risk surgery</td>
<td>122</td>
<td>68%</td>
<td>44%</td>
<td>0.003</td>
</tr>
<tr>
<td>Mayer</td>
<td>High risk patients</td>
<td>60</td>
<td>50%</td>
<td>20%</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Length of Stay (days)

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Type</th>
<th>Number of Patients</th>
<th>Control</th>
<th>GDT Protocol</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boyd</td>
<td>High risk surgery</td>
<td>107</td>
<td>16</td>
<td>12.5</td>
<td>0.31</td>
</tr>
<tr>
<td>Pease</td>
<td>High risk surgery</td>
<td>122</td>
<td>14 (11 - 27)</td>
<td>11 (7 - 15)</td>
<td>0.001</td>
</tr>
<tr>
<td>Mayer</td>
<td>High risk patients</td>
<td>60</td>
<td>19 (14 - 23.5)</td>
<td>15 (12 - 17.75)</td>
<td>0.006</td>
</tr>
<tr>
<td>Sinclair</td>
<td>Proximal femoral fracture</td>
<td>40</td>
<td>20 (10 to 61)</td>
<td>12 (9 to 15)</td>
<td>0.05</td>
</tr>
<tr>
<td>Lopes</td>
<td>High risk surgery</td>
<td>33</td>
<td>17</td>
<td>7</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Cardiac output optimization through goal-directed therapy has the ability to improve postoperative patients’ outcome and to decrease the cost of surgery by reducing postoperative complications. However, cardiac output optimization requires accurate predictors of fluid responsiveness. For that purpose, stroke volume variation has the ability to guide fluid management and to help in conducting goal directed therapy. Using this index along with cardiac output monitoring (“From flying blind to flying right”) has potential to improve our patients’ outcome and to decrease the cost of surgery.

Rationale

Volume expansion is one of the most frequent clinical decisions performed every day by anesthesiologists. The goal of volume expansion is to increase left ventricular stroke volume and cardiac output and, consequently, to increase oxygen delivery to the tissues. However, if volume expansion can be beneficial to our patients when performed appropriately, we also know that inappropriate volume expansion can lead to tissue edema and to a decrease in oxygen extraction. Consequently, it is of major importance to be able to predict the effects of volume expansion before volume expansion is actually performed and there is a need for reliable predictors of fluid responsiveness in the anesthesiology setting. Most experts agree on the definition of responders to volume expansion as patients presenting more than 15% increase in cardiac output following a 500 ml infusion of colloids.

How can we predict fluid responsiveness? From Static to Dynamic parameters

Historically, static parameters of fluid responsiveness have been used for fluid responsiveness prediction in the anesthesiology setting. These static parameters are basically preload parameters such as central venous pressure, pulmonary capillary wedge pressure, and/or left ventricular end-diastolic area. However, recent studies have suggested that these static parameters are poor predictors of fluid responsiveness in the anesthesiology setting and that central venous pressure should not be used anymore to make clinical decision regarding fluid management.
Goal-Directed Therapy (GDT) is a term used to describe the use of cardiac output or similar parameters to perioperatively guide intravenous fluid and inotropic therapy.

Summary of Goal-Directed Therapy Clinical Studies

Goal Directed Therapy (GDT)

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Patient Type</th>
<th>Number of Patients</th>
<th>Control</th>
<th>GDT Protocol</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilson</td>
<td>Major elective surgery</td>
<td>138</td>
<td>17% (8/46)</td>
<td>3% (3/92)</td>
<td>0.007</td>
</tr>
<tr>
<td>Rhodes</td>
<td>High-risk surgery</td>
<td>106</td>
<td>7.5% alive @ 15 years</td>
<td>20.7% alive @ 15 years</td>
<td>0.09</td>
</tr>
<tr>
<td>Boyd</td>
<td>High-risk surgery</td>
<td>107</td>
<td>22.7%</td>
<td>5.7%</td>
<td>0.015</td>
</tr>
</tbody>
</table>

Mortality

- Wilson: Major elective surgery 138 cases, 17% (8/46) compared to 3% (3/92) with GDT, P = 0.007
- Rhodes: High-risk surgery 106 cases, 7.5% alive at 15 years compared to 20.7% with GDT, P = 0.09
- Boyd: High-risk surgery 107 cases, 22.7% compared to 5.7% with GDT, P = 0.015

Morbidity (% of Patients) Complications (per Patient)

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Patient Type</th>
<th>Number of Patients</th>
<th>Control</th>
<th>GDT Protocol</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boyd</td>
<td>High-risk surgery</td>
<td>107</td>
<td>1.35</td>
<td>0.68</td>
<td>0.008</td>
</tr>
<tr>
<td>Venn</td>
<td>Hip fracture repair</td>
<td>90</td>
<td>20%</td>
<td>7%</td>
<td><0.5</td>
</tr>
<tr>
<td>Gem</td>
<td>Major elective surgery</td>
<td>100</td>
<td>7 (+/3)</td>
<td>5 (+/3)</td>
<td>0.03</td>
</tr>
<tr>
<td>Pearson</td>
<td>High-risk surgery</td>
<td>122</td>
<td>68%</td>
<td>44%</td>
<td>0.003</td>
</tr>
<tr>
<td>Mayer</td>
<td>High-risk patients</td>
<td>60</td>
<td>50%</td>
<td>20%</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Length of Stay (days)

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Patient Type</th>
<th>Number of Patients</th>
<th>Control</th>
<th>GDT Protocol</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boyd</td>
<td>High-risk surgery</td>
<td>107</td>
<td>16</td>
<td>12.5</td>
<td>0.31</td>
</tr>
<tr>
<td>Pearson</td>
<td>High-risk surgery</td>
<td>122</td>
<td>14 (11-27)</td>
<td>11 (7-15)</td>
<td>0.001</td>
</tr>
<tr>
<td>Mayer</td>
<td>High-risk patients</td>
<td>60</td>
<td>19 (14-23.5)</td>
<td>15 (12-17.25)</td>
<td>0.006</td>
</tr>
<tr>
<td>Sanders</td>
<td>Proximal femoral fracture</td>
<td>40</td>
<td>20 (10 to 61)</td>
<td>12 (9 to 15)</td>
<td>0.05</td>
</tr>
<tr>
<td>Lopes</td>
<td>High-risk surgery</td>
<td>33</td>
<td>17</td>
<td>7</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Goal-Directed Therapy—Stroke Volume Variation (SVV) and Pulse Pressure Variation (PPV) as Predictors of Fluid Responsiveness

Maxime Cannesson, MD, PhD
Associate Professor of Clinical Anesthesiology
Department of Anesthesiology
University of California, Irvine

What are the potential clinical applications of Stroke Volume Variation (SVV) in the Anesthesiology setting?

Cardiac output optimization through goal-directed therapy has the ability to improve postoperative patients’ outcome and to decrease the cost of surgery by reducing postoperative complications. However, cardiac output optimization requires accurate predictors of fluid responsiveness. For that purpose, stroke volume variation has the ability to guide fluid management and to help in conducting goal-directed therapy. Using this index along with cardiac output monitoring (“From flying blind to flying right”) has potential to improve our patients’ outcome and to decrease the cost of surgery.

Rationale

Volume expansion is one of the most frequent clinical decisions performed every day by anesthesiologists. The goal of volume expansion is to increase left ventricular stroke volume and cardiac output and, consequently, to increase oxygen delivery to the tissues. However, if volume expansion can be beneficial to our patients when performed appropriately, we also know that inappropriate volume expansion can lead to tissue edema and to a decrease in oxygen extraction. Consequently, it is of major importance to be able to predict the effects of volume expansion before volume expansion is actually performed and there is a need for reliable predictors of fluid responsiveness in the anesthesiology setting. Most experts agree on the definition of responders to volume expansion as patients presenting more than 15% increase in cardiac output following a 500 ml infusion of colloid.

How can we predict fluid responsiveness? From Static to Dynamic parameters

Historically, static parameters of fluid responsiveness have been used for fluid responsiveness prediction in the anesthesiology setting. These static parameters are basically preload parameters such as central venous pressure, pulmonary capillary wedge pressure, and/or left ventricular end-diastolic area. However, recent studies have suggested that these static parameters are poor predictors of fluid responsiveness in the anesthesiology setting and that central venous pressure should not be used anymore to make clinical decision regarding fluid management.
More recently, dynamic parameters of fluid responsiveness relying on cardiopulmonary interactions in patients under general anesthesia and mechanical ventilation have been demonstrated to be the best predictors of fluid responsiveness in this setting. In patients under general anesthesia, positive pressure ventilation induces cyclic changes in vena cava blood flow, pulmonary artery flow, and aortic blood flow.

During inspiration, vena cava blood flow (venous return) decreases and, according to the Frank-Starling relationship, pulmonary artery flow decreases. Depending on the position of the patient on the Frank-Starling relationship mechanical ventilation is going to induce either high respiratory variations in left ventricular stroke volume (when the patient is on the steep portion and more likely to be a responder to volume expansion) or low respiratory variations in left ventricular stroke volume (when the patient is on the plateau and more likely to be a non-responder to volume expansion) (Figure 1).

To summarize this concept we can say that the more sensitive a ventricle is to preload (preload dependent) the more the little changes in preload induced by mechanical ventilation are going to impact left ventricular stroke volume. Classically, a stroke volume variation > 13% is a strong predictor of fluid responsiveness while a stroke volume variation < 13% is a strong predictor of fluid non-responsiveness.

Since stroke volume variation and pulse pressure variation require large changes in pleural and transpulmonary pressure, their use as a predictor of fluid responsiveness is limited to mechanically ventilated and deeply sedated patients. Smaller tidal volume (< 8 ml/kg of ideal body weight) or poor lung compliance will reduce the effect on venous return and subsequently the change in SV will be reduced. In patients with cardiac arrhythmias, right or left ventricular failure, changes in stroke volume may no longer reflect preload dependence.

More recently, dynamic parameters of fluid responsiveness relying on cardiopulmonary interactions in patients under general anesthesia and mechanical ventilation have been demonstrated to be the best predictors of fluid responsiveness in this setting. In patients under general anesthesia, positive pressure ventilation induces cyclic changes in vena cava blood flow, pulmonary artery flow, and aortic blood flow.

During inspiration, vena cava blood flow (venous return) decreases and, according to the Frank-Starling relationship, pulmonary artery flow decreases. Depending on the position of the patient on the Frank-Starling relationship mechanical ventilation is going to induce either high respiratory variations in left ventricular stroke volume (when the patient is on the steep portion and more likely to be a responder to volume expansion) or low respiratory variations in left ventricular stroke volume (when the patient is on the plateau and more likely to be a non responder to volume expansion) (Figure 1).

To summarize this concept we can say that the more sensitive a ventricle is to preload (preload dependent) the more the little changes in preload induced by mechanical ventilation are going to impact left ventricular stroke volume. Classically, a stroke volume variation > 13 % is a strong predictor of fluid responsiveness while a stroke volume variation < 13 % is a strong predictor of fluid non responsiveness.

Since stroke volume variation and pulse pressure variation require large changes in pleural and transpulmonary pressure, their use as a predictor of fluid responsiveness is limited to mechanically ventilated and deeply sedated patients. Smaller tidal volume (< 8 ml/kg of ideal body weight) or poor lung compliance will reduce the effect on venous return and subsequently the change in SV will be reduced. In patients with cardiac arrhythmias, right or left ventricular failure, changes in stroke volume may no longer reflect preload dependence.

Goal-directed therapy in high-risk surgical patients: a 15-year follow-up study

Andrew Rhodes1, Maurizio Cecconi1, Mark Hamilton1, Jan Poloniecki2, Justin Woods1, Owen Boyd3, David Bennett1 and R. Michael Grounds1

1. Department of Intensive Care Medicine, St George’s Healthcare NHS Trust, London, UK
2. Department of Medical Statistics, St George’s University of London, London, UK
3. Department of Intensive Care Medicine, Brighton and Sussex University Hospitals NHS Trust, London, UK

Methods
This was a long term follow up of a previous study (Boyd, et al, 1993) to determine patients’ length of survival in which Goal-directed therapy was used to deliberately increase oxygen delivery during surgery.

Results
Data from 106 of the original 107 patients (99%) were available for analysis.

• Long term (15 year) survival
 11 (20.7%) of the GDT patients vs, 4 (7.5%) of the Control Group (p = 0.09).

• Median survival (GDT group) increased by 1,107 days (1,781 vs. 674 days, p = 0.005).

• Factors influencing long-term survival
 Age [hazard ratio (HR) 1.04 (1.02–1.07), p < 0.0001], Randomization to the GDT group [HR 0.61 (0.4–0.92), p = 0.02], Avoidance of a significant postoperative cardiac complication [HR 3.78 (2.16–6.65), p = 0.007].

Conclusions
“Short-term goal-directed therapy in the perioperative period may improve long-term outcomes, in part due to its ability to reduce the number of perioperative complications.”
Goal-directed therapy in high-risk surgical patients: a 15-year follow-up study

Andrew Rhodes1, Maurizio Cecconi1, Mark Hamilton1, Jan Poloniecki2, Justin Woods1, Owen Boyd3, David Bennett1 and R. Michael Grounds1

1. Department of Intensive Care Medicine, St George’s Healthcare NHS Trust, London, UK
2. Department of Medical Statistics, St George’s University of London, London, UK
3. Department of Intensive Care Medicine, Brighton and Sussex University Hospitals NHS Trust, London, UK

Methods
This was a long term follow up of a previous study (Boyd, et al, 1993) to determine patients’ length of survival in which Goal-directed therapy was used to deliberately increase oxygen delivery during surgery.

Results
Data from 106 of the original 107 patients (99%) were available for analysis.

• Long term (15 year) survival
 11 (20.7%) of the GDT patients vs 4 (7.5%) of the Control Group (p = 0.09).

• Median survival (GDT group) increased by 1,107 days (1,781 vs. 674 days, p = 0.005).

• Factors influencing long-term survival
 Age [hazard ratio (HR) 1.04 (1.02–1.07), p < 0.0001], Randomization to the GDT group [HR 0.61 (0.4–0.92), p = 0.02], Avoidance of a significant postoperative cardiac complication [HR 3.78 (2.16–6.6), p = 0.007].

Conclusions
“Short-term goal-directed therapy in the perioperative period may improve long-term outcomes, in part due to its ability to reduce the number of perioperative complications.”

A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients

Owen Boyd, MRCP; R. Michael Grounds, MD FFARCS; E. David Bennett, FRCP
St. George’s Hospital, London, UK

JAMA. 1993 Dec 8;270(22):2699-707.

Methods
This was a prospective, randomized study of 107 high risk surgical patients. Patients with similar demographics, hemodynamic values and surgical types were assigned to a treatment group (n = 53) that received deliberate increase of oxygen delivery to 600 mL/min per m2 with the use of dopexamine hydrochloride infusion or to Control Group (n = 54) that received standard perioperative care. Outcome measures of mortality and complications were assessed at 28 days postoperatively.

Results

• Oxygen Delivery (median): 597 mL / m2 in GDT group vs. 399 mL / m2 in Control Group (p < 0.001)

• Mortality rate: 5.7% in GDT group vs. 22.2% in Control Group

• Mean # of complications: 0.68 per patient in GDT vs. 1.35 per patient in Control Group (p = 0.08)

Conclusions
“Our data suggest that deliberately increasing CI and DO2I perioperatively leads to significant reduction in both mortality and morbidity in those patients who are at risk of both following surgery”
Reducing the risk of major elective surgery—randomized controlled trial of preoperative optimization of oxygen delivery

Jonathan Wilson, Ian Woods, Jayne Fawcett, Rebecca Whall, Wendy Dibbs, Chris Morris, Elizabeth McManus
Departments of Anesthetics and Intensive Care, York District Hospital, York, UK

Methods
This was a randomized, controlled study of high risk 138 patients undergoing major elective surgery. Patients were randomized into 3 groups. Two received invasive hemodynamic monitoring, fluid and either adrenaline or dopexamine to increase oxygen delivery. The third Control Group received routine perioperative care.

Results
- Mortality: 3/92 (3%) in GDT Group (no difference in two treatment groups) vs. 8/46 (17%) in the Control Group (p = 0.007)
- Complications: 14/36 (37%) in patients in dopexamine group vs. 24/46 (52%) in the adrenaline group and 28 (61%) in the Control Group
- Length of Stay: 13 days in dopexamine group vs. 19 days in adrenaline group (p = 0.02) vs. 22 days in Control Group (p = 0.009)

Conclusions
"Routine preoperative optimization of patients undergoing major elective surgery would be a significant and cost effective improvement in perioperative care...administration of fluid and inotropes, guided by invasive monitoring, can significantly reduce mortality, morbidity, and length of hospital stay...values for usage of intensive care beds and length of stay in hospital suggests there may be an overall savings in hospital costs when preoptimising patients for major elective surgery."

Early goal-directed therapy after major surgery reduces complications and duration of hospital stay—a randomized controlled trial

Rupert Pearse, Deborah Dawson, Jayne Fawcett, Andrew Rhodes, R Michael Grounds and R David Bennett
Adult Intensive Care Unit, St George’s Hospital, London, UK

Methods
This was a randomized, blinded study that measured the effects of post-operative goal-directed therapy (GDT) in high-risk patients undergoing major general surgery. The primary outcome measure was post-operative complications. Patients in the Control Group received 250 ml boluses of colloid to sustain an increase in CVP of at least 2mm Hg for 20 minutes. GDT patients received 250 ml boluses to sustain a rise in stroke volume of 10% for 10 minutes. The GDT group also received dopexamine if the oxygen delivery index (DO2 I) failed to reach 600 ml/ml/min/m2. Cardiac output was measured by lithium indicator dilution and pulse power analysis. Sixty-two patients were randomized to GDT and 60 patients to control treatment and followed up for 60 days.

Results
- Postoperative complications: 27 patients (44%) in GDT group vs. 41 patients (68%) in Control Group (p = 0.003)
- Complications per patient: 0.7 per patient in GDT vs. 1.5 per patient in control group (p = 0.02)
- Mean duration of hospital stay: 11 days in GDT group vs 14 days in Control Group (p = 0.002)

Conclusions
"Post-operative GDT is associated with reductions in post-operative complications and duration of hospital stays, but avoids the problems associated with pre-operative ICU admission and pulmonary artery catheterization."
Reducing the risk of major elective surgery—randomized controlled trial of preoperative optimization of oxygen delivery

Jonathan Wilson, Ian Woods, Jayne Fawcett, Rebecca Whall, Wendy Dibbs, Chris Morris, Elizabeth McM anus
Departments of Anesthesics and Intensive Care, York District Hospital, York, UK

Methods
This was a randomized, controlled study of high risk 138 patients undergoing major elective surgery. Patients were randomized into 3 groups. Two received invasive hemodynamic monitoring, fluid and either adrenaline or dopexamine to increase oxygen delivery. The third Control Group received routine perioperative care.

Results
- Mortality: 3/92 (3%) in GDT Group (no difference in two treatment groups) vs. 8/46 (17%) in the Control Group (p = 0.007)
- Complications: 14/36 (30%) in patients in dopexamine group vs. 24/46 (52%) in the adrenaline group and 28 (61%) in the Control Group
- Length of Stay: 13 days in dopexamine group vs. 19 days in adrenaline group (p = 0.02) vs. 22 days in Control Group (p = 0.009)

Conclusions
“Routine preoperative optimization of patients undergoing major elective surgery would be a significant and cost effective improvement in perioperative care...administration of fluid and inotropes, guided by invasive monitoring, can significantly reduce mortality, morbidity, and length of hospital stay...values for usage of intensive care beds and length of stay in hospital suggest there may be an overall savings in hospital costs when preoptimising patients for major elective surgery.”

Early goal-directed therapy after major surgery reduces complications and duration of hospital stay—a randomized controlled trial

Rupert Pearse, Deborah Dawson, Jayne Fawcett, Andrew Rhodes, R Michael Grounds and E David Bennett
Adult Intensive Care Unit, St George's Hospital, London, UK

Methods
This was a randomized, blinded study that measured the effects of post-operative goal-directed therapy (GDT) in high-risk patients undergoing major general surgery. The primary outcome measure was post-operative complications. Patients in the Control Group received 250 ml boluses of colloid to sustain an increase in CVP of at least 2mm Hg for 20 minutes. GDT patients received 250 ml boluses to sustain a rise in stroke volume of 10% for 10 minutes. The GDT group also received dopexamine if the oxygen delivery index (DO2 I) failed to reach 600 ml/mil/min/m2. Cardiac output was measured by lithium indicator dilution and pulse power analysis. Sixty-two patients were randomized to GDT and 60 patients to control treatment and followed up for 60 days.

Results
- Postoperative complications: 27 patients (44%) in GDT group vs. 41 patients (68%) in Control Group (p = 0.003)
- Complications per patient: 0.7 per patient in GDT vs. 1.5 per patient in control group (p = 0.02)
- Mean duration of hospital stay: 11 days in GDT group vs 14 days in Control Group (p = 0.002)

Conclusions
“Post-operative GDT is associated with reductions in post-operative complications and duration of hospital stays, but avoids the problems associated with pre-operative ICU admission and pulmonary artery catheterization.”
Cost analysis of a treatment policy of a deliberate perioperative increase in oxygen delivery in high risk surgical patients

J.F. Guest, O. Boyd, W.M. Hart, R.M. Grounds, E.D. Bennett
Adult Intensive Care Unit, St George's Hospital, Blackshaw Road, London, UK

Methods
A previous clinical trial (Boyd et al, 1993) demonstrated a significant reduction in mortality (5.7% vs 22.2%, p = 0.015) and complications (0.68) vs (1.35), p = 0.008) in high risk surgical patients in whom oxygen delivery was specifically targeted towards 600 ml/min per m2 compared with conventional management. This current study retrospectively analyzed the medical cost of use of each patient in the trial.

Results
• Mortality: 5.7% in GDT group vs. 22.2% in Control Group (p = 0.015)
• Morbidity: 0.68 in GDT group vs. 1.35 in Control Group
• Median Cost of Treatment: GDT group = £6,525 vs. £7,784 in Control Group
• Median Cost of Treating Complications: £213 in GDT group vs. £668 in Control Group

Conclusions
“Perioperative increase in oxygen delivery in high risk surgical patients not only improves survival, but also provides an actual and relative cost savings. This may have important implications for the management of these patients and the funding of intensive care”

Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery—a pilot randomized controlled trial

Marcel R Lopes1, Marcos A Oliveira1, Vanessa Oliveira S Pereira1, Ivanside Paula B Lemos1, Jose Otavio C Auler Jr1 and Frédéric Michard3
1 Department of Anesthesia and Critical Care, Santa Casa de Misericórdia de Passos, Passos, MG, Brazil
2 Department of Anesthesia and Critical Care, University of São Paulo, São Paulo, SP, Brazil
3 Department of Anesthesia and Critical Care, Béclère Hospital University Paris, Clamart, France

Methods
This was a single center, prospective, randomized study to determine if volume loading during high-risk surgery could improve outcomes. The variation in arterial pulse pressure (ΔPP) induced by mechanical ventilation was used as an indicator of a patient’s fluid responsiveness. Thirty-three patients undergoing high-risk surgery were randomized either to a Control Group (n = 16) or to a GDT intervention group (n = 17). In the GDT group, ΔPP was continuously monitored during surgery and minimized to 10% or less by volume loading.

Results
Both groups were comparable in terms of demographic data, American Society of Anesthesiology score, type, and duration of surgery.

• Pulse Pressure Variation ΔPP decreased from 22 ± 75 to 9 ± 1% (P < 0.05) in the monitored group.
• Duration of postoperative stay 7 days in GDT group vs. 17 days in Control Group, P < 0.01
• Postoperative complications per patient 1.4 ± 2.1 complications per patient in GDT group vs. 3.9 ± 2.8, (P < 0.05),
• Median duration of mechanical ventilation 1 day in GDT group vs. 5 days in Control Group, (P < 0.05)
• ICU stay 3 days in GDT group vs. 9 days in Control Group, P < 0.01

Conclusions
“Monitoring and minimizing ΔPP by volume loading during high-risk surgery improves postoperative outcome and decreases the length of stay in hospital.”
Cost analysis of a treatment policy of a deliberate perioperative increase in oxygen delivery in high risk surgical patients

J.F. Guest, O. Boyd, W.M. Hart, R.M. Grounds, E.D. Bennett
Adult Intensive Care Unit, St George's Hospital, Blackshaw Road, London, UK

Methods
A previous clinical trial (Boyd et al, 1993) demonstrated a significant reduction in mortality (5.7% vs 22.2%, p = 0.015) and complications (0.68) vs (1.35), p = 0.008) in high risk surgical patients in whom oxygen delivery was specifically targeted towards 600 ml/min per m2 compared with conventional management. This current study retrospectively analyzed the medical cost of use of each patient in the trial.

Results
• Mortality: 5.7% in GDT group vs. 22.2% in Control Group (p = 0.015)
• Morbidity: 0.68 in GDT group vs. 1.35 in Control Group
• Median Cost of Treatment: GDT group = £6,525 vs. £7,784 in Control Group
• Median Cost of Treating Complications: £213 in GDT group vs. £668 in Control Group

Conclusions
"Perioperative increase in oxygen delivery in high risk surgical patients not only improves survival, but also provides an actual and relative cost savings. This may have important implications for the management of these patients and the funding of intensive care"
Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery

Tong J. Gan, Andrew Soppitt, Mohammed Maroof, Habib El-Moalem, Kerri Robertson, Eugene Moretti, Peter Dwane, Peter Glass
Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina

Methods

One hundred patients who were to undergo major elective surgery with an anticipated blood loss greater than 500 ml were randomly assigned to a Control Group (n = 50) that received standard intraoperative care or to a protocol (GDT) group (n = 50). The GDT group received intraoperative plasma volume expansion to maintain maximal stroke volume, monitored by transesophageal Doppler. Length of postoperative hospital stay and postoperative surgical morbidity were assessed.

Results

- End Of Surgery Cardiac Output: GDT Group = 5.8 ± 1.6 vs. Control = 5.1 ± 1.4 (p < 0.05)
- End Of Surgery Stroke Volume: GDT Group = 76 ± 19 vs. Control = 67 ± 17 (p < 0.05)
- Duration of Hospital Stay: GDT Group = 5 ± 3 vs. Control = 7 ± 3 (p = 0.03)
- Oral Intake of Solid Food: GDT Group = 3 ± 0.5 vs. Control = 4.7 ± 0.5 (p = 0.01)
- Severe postoperative vomiting: GDT Group = 7/50 (14%) vs. Control = 18/50 (35%), (p <0.05)

Conclusions

“Goal directed intraoperative fluid administration results in earlier return to bowel function, lower incidence of postoperative nausea and vomiting, and a decrease in the length of postoperative hospital stay”

Intraoperative intravascular fluid optimization and length of hospital stay after repair of proximal femoral fracture—randomized controlled trial

Susan Sinclair, Sally James, Mervyn Singer
Departments of Intensive Care and Orthopaedics, University College London Hospital, London, UK

Methods

This was a prospective, randomized controlled trial that compared conventional intraoperative fluid management with repeated fluid challenges to maximize stroke volume in 40 patients undergoing hip fracture repair. Stroke volume was monitored by transesophageal Doppler.

Results

- Operative Changes in Cardiac Output: GDT Group = +1.2 L/min vs. Control Group= -0.41 L/min (p < 0.05)
- Operative Changes in Stroke Volume: GDT Group = +13 ml vs. Control Group = -5 ml (p <0.001)
- Hospital Stay: GDT Group = 12 days vs. Control Group = 20 days (p < 0.05)

Conclusions

“Intraoperative intravascular fluid loading to optimal stroke volume resulted in a more rapid postoperative recovery and a significantly reduced hospital stay.”
Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery

Tong J. Gan, Andrew Soppitt, Mohammed Maroof, Hahib El-Moalem, Kerri Robertson, Eugene Moretti, Peter Dwane, Peter Glass
Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina

Methods

One hundred patients who were to undergo major elective surgery with an anticipated blood loss greater than 500 ml were randomly assigned to a Control Group (n = 50) that received standard intraoperative care or to a protocol (GDT) group (n = 50). The GDT group received intraoperative plasma volume expansion to maintain maximal stroke volume, monitored by transesophageal Doppler. Length of postoperative hospital stay and postoperative surgical morbidity were assessed.

Results

- End Of Surgery Cardiac Output: GDT Group = 5.8 ± 1.6 vs. Control = 5.1 ± 1.4 (p < 0.05)
- End Of Surgery Stroke Volume: GDT Group = 76 ± 19 vs. Control = 67 ± 17 (p < 0.05)
- Duration of Hospital Stay: GDT Group = 5 ± 3 vs. Control = 7 ± 3 (p = 0.03)
- Oral Intake of Solid Food: GDT Group = 3 ± 0.5 vs. Control = 4.7 ± 0.5 (p < 0.01)
- Severe postoperative vomiting: GDT Group = 7/50 (14%) vs. Control = 18/50 (35%), (p <0.05)

Conclusions

“Goal-directed intraoperative fluid administration results in earlier return to bowel function, lower incidence of postoperative nausea and vomiting, and a decrease in the length of postoperative hospital stay.”

Intraoperative intravascular fluid optimization and length of hospital stay after repair of proximal femoral fracture—randomized controlled trial

Susan Sinclair, Sally James, Mervyn Singer
Departments of Intensive Care and Orthopaedics, University College London Hospital, London, UK

Methods

This was a prospective, randomized controlled trial that compared conventional intraoperative fluid management with repeated fluid challenges to maximize stroke volume in 40 patients undergoing hip fracture repair. Stroke volume was monitored by transesophageal Doppler.

Results

- Operative Changes in Cardiac Output: GDT Group = +1.2 L/min vs. Control Group= -0.4 L/min (p < 0.05)
- Operative Changes in Stroke Volume: GDT Group = +13 ml vs. Control Group = -5 ml (p <0.001)
- Hospital Stay: GDT Group = 12 days vs. Control Group = 20 days (p < 0.05)

Conclusions

“Intraoperative intravascular fluid optimization and length of hospital stay after repair of proximal femoral fracture—randomized controlled trial”

“Goal-directed intraoperative fluid administration results in earlier return to bowel function, lower incidence of postoperative nausea and vomiting, and a decrease in the length of postoperative hospital stay.”
Goal-directed intraoperative therapy based on auto-calibrated arterial pressure waveform analysis reduces hospital stay in high-risk surgical patients—a randomized controlled trial

Jochen Mayer, Joachim Boldt, Andinet Mengistu, Kerstin D Rohm, Stefan Suttner
Department of Anaesthesiology and Intensive Care Medicine, Klinikum Ludwigshafen, Ludwigshafen, Germany
Critical Care 2010, 14:R18 doi:10.1186/cc875

Methods

60 high-risk patients scheduled for major abdominal surgery were randomized into an enhanced hemodynamic monitoring group using a cardiac index based intraoperative optimization protocol (GDT-group, n = 30) or a standard management group (Control-group, n = 30), based on standard monitoring data.

Results

• The median duration of hospital stay:
 - 15 days (GDT) vs. 19 days (Control) (P = 0.006)

• Complications:
 - 6 patients (GDT) vs. 15 patients (Control) (P = 0.03)

• The total number of complications:
 - 17 vs. 49 complications (P = 0.001).

Conclusions

"In high-risk patients undergoing major abdominal surgery, implementation of an intraoperative goal-directed hemodynamic optimization protocol...was associated with a reduced length of hospital stay and a lower incidence of complications compared to a standard management protocol."

Randomized controlled trial to investigate influence of the fluid challenge on duration of hospital stay and perioperative morbidity in patients with hip fractures

Venn R, Steele A, Richardson P, Poloniecki J, Grounds M, Newman P.
Department of Anaesthesia and Intensive Care, Worthing Hospital, W. Sussex UK

Methods

This was a prospective, randomized controlled study comparing conventional fluid management with two methods of advanced hemodynamic monitoring. A total of 90 patients undergoing proximal femoral fracture repair were randomized into three groups. Two groups received colloid fluid challenges by CVP monitoring (CVP, n=31) or esophageal Doppler monitoring (DOP, n=30). The Control Group received conventional fluid management (CON, n=29). Outcome measures included hospital stay and postoperative complications.

Results

• Days before medically fit for discharge:
 - CVP group = 10.0, DOP Group = 7.7, CON Group = 13.9 (p = 0.035)

• Severe intraoperative hypo tension:
 - CVP group = 9%, DOP Group = 7%, CON Group = 28% (p = 0.048)

Conclusions

"Invasive intraoperative hemodynamic monitoring with fluid challenges during repair of femoral fracture under general anaesthetic shortens time to being medically fit for discharge"
Randomized controlled trial to investigate influence of the fluid challenge on duration of hospital stay and perioperative morbidity in patients with hip fractures.

Methods

This was a prospective, randomized controlled study comparing conventional fluid management with two methods of advanced hemodynamic monitoring. A total of 90 patients undergoing proximal femoral fracture repair were randomized into three groups. Two groups received colloid fluid challenges by CVP monitoring (CVP, n=31) or esophageal Doppler monitoring (DOP, n=30). The Control Group received conventional fluid management (CON, n=29). Outcome measures included hospital stay and postoperative complications.

Results

• Days before medically fit for discharge: CVP group = 10.0, DOP Group = 7.7, CON Group = 13.9 (p = 0.035)
• Severe intraoperative hypotension: CVP group = 9%, DOP Group = 7%, CON Group = 28% (p = 0.048).

Conclusions

“Invasive intraoperative hemodynamic monitoring with fluid challenges during repair of femoral fracture under general anaesthetic shortens time to being medically fit for discharge.”

Goal-directed intraoperative therapy based on auto calibrated arterial pressure waveform analysis reduces hospital stay in high-risk surgical patients—a randomized controlled trial

Jochen Mayer, Joachim Boldt, Andinet Mengistu, Kerstin D Rohm, Stefan Suttner
Department of Anesthesiology and Intensive Care Medicine, Klinikum Ludwigshafen, Ludwigshafen, Germany
Critical Care 2010, 14:R18 doi:10.1186/cc8875

Methods

60 high-risk patients scheduled for major abdominal surgery were randomized into an enhanced hemodynamic monitoring group using a cardiac index based intraoperative optimization protocol (GDT-group, n = 30) or a standard management group (Control-group, n = 30), based on standard monitoring data.

Results

• The median duration of hospital stay: 15 days (GDT) vs. 19 days (Control) (P = 0.006)
• Complications: 6 patients (GDT) vs. 15 patients (Control) (P = 0.03).
• The total number of complications: 17 versus (GDT) vs. 49 complications, (P = 0.001).

Conclusions

“In high-risk patients undergoing major abdominal surgery, implementation of an intraoperative goal-directed hemodynamic optimization protocol...was associated with a reduced length of hospital stay and a lower incidence of complications compared to a standard management protocol.”
Normal Adult Hemodynamic Parameters

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Parameter</th>
<th>Equation</th>
<th>Normal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP</td>
<td>Systolic Blood Pressure</td>
<td></td>
<td>90 - 140 mmHg</td>
</tr>
<tr>
<td>DBP</td>
<td>Diastolic Blood Pressure</td>
<td></td>
<td>60 - 90 mmHg</td>
</tr>
<tr>
<td>MAP</td>
<td>Mean Arterial Pressure</td>
<td>SBP + (2 x DBP)/3</td>
<td>70 - 105 mmHg</td>
</tr>
<tr>
<td>CVP</td>
<td>Central Venous Pressure</td>
<td></td>
<td>5 - 10 mmHg</td>
</tr>
<tr>
<td>PPV</td>
<td>Pulse Pressure Variation</td>
<td>(PPmax - PPmin)/[(PPmax + PPmin)/2] x 100</td>
<td><10% unlikely to be fluid responsive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>15-15% likely to be fluid responsive</td>
</tr>
<tr>
<td>SVV</td>
<td>Stroke Volume Variation</td>
<td>SVmax - SVmin/[(SVmax + SVmin)/2] x 100</td>
<td><10% unlikely to be fluid responsive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>15-15% likely to be fluid responsive</td>
</tr>
<tr>
<td>CO</td>
<td>Cardiac Output</td>
<td>HR x SV/1000</td>
<td>4.0 - 8.0 l/min</td>
</tr>
<tr>
<td>CI</td>
<td>Cardiac Index</td>
<td>CO/BSA</td>
<td>2.5 - 4.0 l/min/m2</td>
</tr>
<tr>
<td>SV</td>
<td>Stroke Volume</td>
<td>CO/HR x 1000</td>
<td>60 - 100 ml/beat</td>
</tr>
<tr>
<td>SVI</td>
<td>Stroke Volume Index</td>
<td>CI/HR x 1000</td>
<td>33 - 47 ml/m2/beat</td>
</tr>
<tr>
<td>SVR</td>
<td>Systemic Vascular Resistance</td>
<td>80 x (MAP - RAP)/CO</td>
<td>800 - 1200 dynes - sec/cm²</td>
</tr>
<tr>
<td>SVRI</td>
<td>Systemic Vascular Resistance Index</td>
<td>80 x MAP - RAP/CI</td>
<td>1970 - 2390 dynes - sec/cm²/m2</td>
</tr>
<tr>
<td>HR</td>
<td>Heart Rate</td>
<td></td>
<td>60-120 bpm</td>
</tr>
<tr>
<td>BSA</td>
<td>Body Surface Area</td>
<td>BSA(m²) = 0.007184 x wt (kg) x 0.028 x Ht (cm)²</td>
<td>Men 1.9 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Women 1.6 m²</td>
</tr>
<tr>
<td>EF</td>
<td>Ejection Fraction</td>
<td>SV/EDV</td>
<td>55-75%</td>
</tr>
<tr>
<td>SaO2</td>
<td>Arterial Oxygen Saturation</td>
<td></td>
<td>95 - 100%</td>
</tr>
<tr>
<td>SvO2</td>
<td>Mixed Venous Saturation</td>
<td></td>
<td>60 - 80%</td>
</tr>
</tbody>
</table>